stichting mathematisch centrum

AFDELING ZUIVERE WISKUNDE (DEPARTMENT OF PURE MATHEMATICS)

ZW 90/76

DECEMBER

A.E. BROUWER & J. VAN DE LUNE

A NOTE ON CERTAIN OSCILLATING SUMS

2e boerhaavestraat 49 amsterdam

Printed at the Mathematical Centre, 49, 2e Boerhaavestraat, Amsterdam.

The Mathematical Centre, founded the 11-th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications. It is sponsored by the Netherlands Government through the Netherlands Organization for the Advancement of Pure Research (Z.W.0).

A note on certain oscillating sums

bу

A.E. Brouwer and J. van de Lune

ABSTRACT: Let
$$S(N,\alpha) = \sum_{n=1}^{N} (-1)^{\lfloor n\alpha \rfloor}$$
.

A characterization is given of all real α for which $S(N,\alpha) \geq 0$ for all N. In addition it is shown that the set consisting of all these α has Lebesgue measure zero.

KEY WORDS & PHRASES: exponential sums, continued fractions

1

O. INTRODUCTION

In this note we investigate sums of the form

(0.1)
$$S_{N}(\alpha) = \sum_{n=1}^{N} (-1)^{\lfloor n\alpha \rfloor}, (\alpha \in \mathbb{R}).$$

In particular we shall characterize the set $\mathcal P$ and the irrational elements of $\mathcal N$ where

$$(0.2) P = \{\alpha \in \mathbb{R} \mid S_{\mathbf{N}}(\alpha) \ge 0 \text{for all } \mathbf{N} \in \mathbb{N}\}$$

and

(0.3)
$$N = \{\alpha \in \mathbb{R} \mid S_{N}(\alpha) \leq 0 \quad \text{for all } N \in \mathbb{N}\}.$$

These characterizations (see theorem 2.1 and 4.1) will be given in terms of the regular continued fraction expansions of the corresponding α . In addition it will be shown that P and N have (Lebesgue) measure 0.

1. PREPARATIONS

We start dealing with P. It is clear that

$$(1.1) 0 \in \mathcal{P}$$

and

$$(1.2) \alpha \in P \iff \alpha + 2 \in P.$$

Hence, without loss of generality, we may assume that $\alpha > 0$. For the time being we also assume α to be *irrational*.

A simple counting process reveals that if α is positive then

(1.3)
$$S_{N}(\alpha) = \sum_{k=1}^{M} (-1)^{k-1} \{ [k\beta] - [(k-1)\beta] \} + (-1)^{M} \{ N-[M\beta] \}$$

where $M = [N\alpha]$ and $\beta = \frac{1}{\alpha}$. Observe that for any $M \in \mathbb{N}$

(1.4)
$$S_{[M\beta]}(\alpha) = \sum_{k=1}^{M} (-1)^{k-1} \{ [k\beta] - [(k-1)\beta] \}.$$

It is easily seen that (for positive α) $\alpha \in P$ if and only if

(1.5)
$$\sum_{k=1}^{2K} (-1)^{k-1} \{ [k\beta] - [(k-1)\beta] \} \ge 0 \quad \text{for all } K \in \mathbb{N}.$$

Since 2K is even (sic!) it follows that $\alpha \in P$ if and only if for some $z \in \mathbb{Z}$

If we choose $\beta + z > 0$ it follows that

$$(1.7) \alpha \in P \iff \frac{1}{\beta + z} \in P.$$

In particular, taking $z = - [\beta]$ we obtain

(1.8)
$$\alpha \in P \iff \frac{1}{\frac{1}{\alpha} - \left[\frac{1}{\alpha}\right]} \in P.$$

For any irrational α with regular continued fraction expansion

$$\alpha = \langle a_0; a_1, a_2, a_3, \dots \rangle = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \dots}}}$$

we define

(1.9)
$$g(\alpha) = \langle a_2; a_3, a_4, a_5, ... \rangle$$

and

(1.10)
$$\rho_k(\alpha) = \langle 0; a_k, a_{k+1}, a_{k+2}, \dots \rangle$$
, $(k \in \mathbb{N})$.

It is clear that

(1.11)
$$0 < \rho_k(\alpha) < 1$$
 for all $k \in \mathbb{N}$

and

(1.12)
$$\frac{1}{\rho_k(\alpha)} = \langle a_k; a_{k+1}, a_{k+2}, ... \rangle$$

so that

$$(1.13) \qquad \frac{1}{\rho_k(\alpha)} = a_k + \rho_{k+1}(\alpha)$$

and

$$(1.14) \qquad \left[\frac{1}{\rho_k(\alpha)}\right] = a_k.$$

Hence

(1.15)
$$\frac{1}{\frac{1}{\rho_{k}(\alpha)} - \left[\frac{1}{\rho_{k}(\alpha)}\right]} = \frac{1}{\rho_{k+1}(\alpha)} = a_{k+1} + \rho_{k+2}(\alpha).$$

LEMMA 1.1. If α is positive and irrational then

(1.16)
$$\alpha \in P \iff (g(\alpha) \in P \text{ and } a_0 \equiv 0 \pmod{2}).$$

<u>PROOF</u>. (\Rightarrow) Let $\alpha \in \mathcal{P}$. Then $a_0 \equiv 0 \pmod{2}$. Indeed, if $a_0 \not\equiv 0 \pmod{2}$ we would have $S_1(\alpha) = -1$ so that $\alpha \not\in \mathcal{P}$.

Hence, by (1.2), it follows that α - $a_0 \in \mathcal{P}$, so that by (1.8) we have

$$\frac{1}{\frac{1}{\alpha - a_0} - \left[\frac{1}{\alpha - a_0}\right]} \in P$$

Since the left hand side of (1.17) equals $g(\alpha)$ this part of the proof is complete.

(\Leftarrow). If $g(\alpha) \in P$ then by (1.17) and (1.8) we have that $\alpha - a_0 \in P$. Since $a_0 \equiv 0 \pmod{2}$ it follows from (1.2) that $\alpha \in P$. \square Define

$$(1.18) P_{\mathbf{N}} = \{0 \leq \alpha < 1 \mid S_{\mathbf{n}}(\alpha) \geq 0 \text{ for all } \mathbf{n} \leq \mathbf{N}\}.$$

From this definition it is clear that

(1.19)
$$P_1 \supset P_2 \supset P_3 \supset ...$$

and

(1.20)
$$P \cap [0,1) = \bigcap_{N=1}^{\infty} P_{N}.$$

Let $F_{\rm N}$ be the Farey series of order N, restricted to the interval [0,1).

<u>LEMMA 1.2.</u> P_N is a (non-empty) union of a finite number of intervals of the form [a,b) with a < b where a and b are (rational) points of F_N .

PROOF. It is easily seen that

(1.21)
$$[0,\frac{1}{N}) \subset P_N \text{ and } [\frac{N-1}{N}, 1) \subset P_N$$

proving the "non-empty" part of the lemma.

Now let a and b be consecutive points of \mathcal{F}_{N} . Then the proof is complete if we can show that

(1.22)
$$a \in P_N \Rightarrow [a,b) \subset P_N$$
.

By definition, a $\in \mathcal{P}_{N}$ implies that

(1.23)
$$S_{n}(\alpha) = \sum_{k=1}^{n} (-1)^{\lfloor k\alpha \rfloor} \ge 0 \text{ for all } n \le N.$$

Since for every fixed $k \le N$ the function [kx] is constant on each of the intervals $[0,\frac{1}{k})$, $[\frac{1}{k},\frac{2}{k})$, ..., $[\frac{k-1}{k},\ 1)$ and since [a,b) is always contained in one of these intervals, the lemma follows from (1.23) by a right-continuity argument. \square

COROLLARY 1.1. P is left-closed. In other words:

If $\{\alpha_n\}_{n=1}^{\infty}$ is a non-increasing sequence in P with limit α then also $\alpha \in P$.

COROLLARY 1.2. P is (Lebesgue) measurable.

LEMMA 1.3. Let α be irrational and positive. If

$$\beta = \frac{1}{\alpha}$$
, M \in IN, N = [2M β], z \in Z, β + z > 0, K = [2M(β +z)]

then

(1.24)
$$S_{N}(\alpha) = S_{K}(\frac{1}{\beta+z}).$$

<u>PROOF.</u> This is a simple consequence of (1.4). \Box If we choose $z = -[\beta]$ in lemma 1.3 then

(1.25)
$$K = [2M(\beta-[\beta])] \leq [2M\beta] = N.$$

2. CHARACTERIZATION OF P

THEOREM 2.1. Let α be irrational and positive with regular continued fraction expansion

$$\alpha = \langle a_0; a_1, a_2, a_3, \dots \rangle.$$

Then

(2.1)
$$\alpha \in P \iff (a_{2i} \equiv 0 \pmod{2} \text{ for all } i \geq 0).$$

<u>PROOF.</u> (\Rightarrow). Let $\alpha \in P$. Then, by lemma 1.1 we have $a_0 \equiv \pmod{2}$ and $g(\alpha) \in P$. Observing that $g(\alpha) = \langle a_2; a_3, a_4, \ldots \rangle$ we must have $a_2 \equiv 0 \pmod{2}$ etc. (\Leftarrow). Now assume that $a_{2i} \equiv 0 \pmod{2}$ for all $i \geq 0$. Suppose that $\alpha \notin P$. Then also $\rho_1 \stackrel{\text{def}}{=} \alpha - a_0 \notin P$. Hence

(2.2)
$$S_N(\rho_1) < 0 \text{ for some } N \in {\rm I\! N}.$$

Choose N such that the inequality in (2.2) holds true and such that N is minimal. Since $0 < \rho_1 < 1$ we may consider the position of ρ_1 with respect to the Farey series of order N.

For every $n \in \mathbb{N}$ such that $n \leq N$, the function [nx] is constant on the canonical (= smallest) intervals of the form [a,b) corresponding to \mathcal{F}_N . Hence, since ρ_1 is irrational, there exists an open interval I containing ρ_1 such that

(2.3)
$$S_{N}(\gamma) < 0 \text{ for all } \gamma \in I.$$

Because of the minimality of N there exists an M \in IN such that N = $\left\lfloor \frac{2M}{\rho_1} \right\rfloor$. From continuity arguments concerning regular continued fractions it follows that there exists an ℓ \in IN such that all irrational numbers x > 0 defined by

(2.4)
$$x = \langle 0; a_1, a_2, \dots, a_{2\ell-1}, a_{2\ell}, m_{2\ell+1}, m_{2\ell+2}, \dots \rangle$$

(with $m_j \in \mathbb{N}, j \ge 2\ell+1$)

are such that

(2.5)
$$x \in I$$
 and $\left[\frac{2M}{x}\right] = \left[\frac{2M}{\rho_1}\right] = N$.

Observe that (since $a_{2i} \equiv 0 \pmod{2}$)

(2.9)
$$S_{N_{1}} \left(\frac{1}{x_{0}} - \left[\frac{1}{x_{0}} \right] \right) = S_{N_{1}} \left(\langle a_{2}; a_{3}, a_{4}, \dots, a_{2\ell}, N, 1, 1, 1, \dots \rangle \right) = S_{N_{1}} \left(\langle 0; a_{3}, a_{4}, \dots, a_{2\ell}, N, 1, 1, 1, \dots \rangle \right) = S_{N_{1}} \left(\rho_{3}(\alpha) \right).$$

Without loss of generality we may assume that \mathbf{N}_1 is the smallest natural number for which

$$s_{N_1}(\rho_3(\alpha)) < 0.$$

Continuing this reduction we will ultimately find a natural number N_{ℓ} such that

(2.10)
$$S_{N_0}$$
 (<0;N,1,1,1,...>) < 0 with $N_{\ell} \leq N$.

On the other hand, since

(2.11)
$$\langle 0; N, 1, 1, 1, \ldots \rangle = \frac{1}{N+\delta} \left(\langle \frac{1}{N} \rangle \right)$$

for some $\delta > 0$ and since $N_{\ell} \leq N$ we have

(2.12)
$$S_{N_0}(<0;N,1,1,1,...>) > 0.$$

Since this contradicts (2.10) the proof is complete.

THEOREM 2.2. If α is rational then $\alpha \in P$ if and only if the canonical continued fraction expansion of α is of the form

(2.13a)
$$\alpha = \langle a_0; a_1, a_2, \dots, a_{2\ell-1}, a_{2\ell} \rangle$$

with

(2.13b)
$$\alpha_{2i} \equiv 0 \pmod{2}$$
 for all $0 \leq i \leq \ell$.

PROOF. Suppose α satisfies (2.13).

Then

(2.14)
$$\alpha < \alpha_N \text{ for all } N \in \mathbb{N}$$

where

(2.15)
$$\alpha_{N} = \langle a_{0}; a_{1}, a_{2}, \dots, a_{2\ell-1}, a_{2\ell}, 2N, 2N, 2N, \dots \rangle$$

Observing that P is left closed and that

(2.16)
$$\lim_{N\to\infty} \alpha_N = \alpha \text{ and } \alpha_N \in \mathcal{P}.$$

it follows from (2.14) that $\alpha \in P$.

Now assume that (2.13) is not satisfied. Observe that if α is positive and rational then (compare (1.3))

$$(2.16) S_{N}(\alpha) = \lim_{\epsilon \downarrow 0} \left\{ \sum_{k=1}^{M} (-1)^{k} \left\{ \left[k(\beta - \epsilon) \right] - \left[(k-1)(\beta - \epsilon) \right] \right\} + (-1)^{M} \left\{ N - \left[M(\beta - \epsilon) \right] \right\} \right\}$$

where

$$M = \lim_{\epsilon \downarrow 0} [N(\alpha + \epsilon)] = [N\alpha].$$

From this we obtain that (for positive α) $\alpha \in \mathcal{P}$ if and only if for all $K \in \mathbb{N}$

(2.17)
$$\lim_{\varepsilon \downarrow 0} \sum_{k=1}^{2K} (-1)^{k-1} \{ [k(\beta-\varepsilon)] - [(k-1)(\beta-\varepsilon)] \} \ge 0$$

so that, similarly as in section 1, for $\alpha > 0$ and $\alpha \in Q$ we have

(2.18)
$$\alpha \in P \iff (\frac{1}{\beta+z} \in P \text{ for some } z \in \mathbb{Z}).$$

In particular we use (2.18) with $z = - [\beta]$.

CASE 1.
$$\alpha = \langle a_0; a_1, a_2, ..., a_{2\ell-1} \rangle$$

Assuming that $\alpha \in P$ we would ultimately obtain that $\{a_{2\ell-2}; a_{2\ell-1} > \in P\}$ so that we must have $a_{2\ell-2} \equiv 0 \pmod 2$ and hence

(2.19)
$$< 0; a_{2\ell-1} > = \frac{1}{a_{2\ell-1}} \in P_{\bullet}$$

However, it is easily verified that P does not contain any of the numbers $\frac{1}{n}$, $n \in \mathbb{N}$.

CASE 2. α = < $a_0; a_1, a_2, \dots, a_{2\ell-1}, a_{2\ell}$ > with $a_{2i} \not\equiv 0 \pmod{2}$ for some i. Repeated use of (2.18) reveals that $\alpha \not\in P$.

3. THE MEASURE OF THE SET P.

THEOREM 3.1. The set P has measure 0.

PROOF. Define $P^* = \{P \setminus Q\} \cap [0,1)$.

Let (a_i,b_i) be some countable system of open intervals such that $0 \le a_i < b_i$ for all i and

$$(3.1) E \stackrel{\text{def}}{=} \bigcup_{i=1}^{\infty} (a_i,b_i) \supset P^*.$$

From the characterization of the irrational points belonging to $\mathcal P$ it is clear that

(3.2)
$$p^* = \bigcup_{\substack{k, a=1 \\ x \in P^*}}^{\infty} \left\{ \frac{1}{k + \frac{1}{2a + x}} \right\}$$

so that

$$(3.3) P^* \subset \bigcup_{\substack{k,a=1\\x \in E}}^{\infty} \left\{ \frac{2a+x}{k(2a+x)+1} \right\}.$$

Since for all fixed k, a \in \mathbb{N} the function

(3.4)
$$\frac{2a+x}{k(2a+x)+1}$$
, (x>0)

is increasing we obtain that (λ denoting Lebesgue measure)

(3.5)
$$\lambda(p^{*}) \leq \sum_{i,k,a=1}^{\infty} \left\{ \frac{2a+b_{i}}{k(2a+b_{i})+1} - \frac{2a+a_{i}}{k(2a+a_{i})+1} \right\} =$$

$$= \sum_{i,k,a=1}^{\infty} \frac{b_{i}-a_{i}}{\{k(2a+b_{i})+1\}\{k(2a+a_{i})+1\}} \leq$$

$$\leq \sum_{i,k,a=1}^{\infty} \frac{b_{i}-a_{i}}{4k^{2}a^{2}} = \frac{1}{4} \left(\frac{\pi^{2}}{6}\right)^{2} \cdot \lambda(E).$$

It follows that

(3.6)
$$\lambda(P^*) \leq \frac{\pi^4}{144} \lambda(E) < \frac{7}{10} \lambda(E)$$
.

Since p^* is measurable and E may be chosen such that

(3.7)
$$\lambda(E) < \lambda(P^*) + \varepsilon,$$

it follows easily that we must have

$$(3.8) \qquad \lambda(\mathcal{P}^*) = 0$$

and hence

$$(3.9) \qquad \lambda(P) = 0.$$

4. THE SET N

THEOREM 4.1. If α is irrational then

$$(4.1) \qquad \alpha \in \mathbb{N} \iff -\alpha \in \mathbb{P}.$$

PROOF. Observe that

$$[x] + [-x] = -1 \quad \text{for all} \quad x \in \mathbb{R} \setminus \mathbb{Z}.$$

Hence, if α is irrational then

(4.3)
$$S_{N}(\alpha) = \sum_{n=1}^{N} (-1)^{\lfloor n\alpha \rfloor} = \sum_{n=1}^{N} (-1)^{-1-\lfloor -n\alpha \rfloor} =$$

$$= -\sum_{n=1}^{N} (-1)^{-\lfloor -n\alpha \rfloor} = -\sum_{n=1}^{N} (-1)^{\lfloor n(-\alpha) \rfloor}$$

so that

(4.4)
$$S_{N}(\alpha) \leq 0 \iff S_{N}(-\alpha) \geq 0$$
,

proving the theorem.

<u>REMARK</u>. In general, formula (4.1) does not hold true for $\alpha \in Q$ as may be seen from the following example: $1 \in N$, $-1 \notin P$.

COROLLARY. The set N has measure zero.

5. ONE MORE PROPERTY OF P (resp. N)

THEOREM 5.1. For every irrational α ϵ P we have that

(5.1)
$$S_N(\alpha) = 0$$
 for infinitely many $N \in \mathbb{N}$.

In order to prove this we use the following

<u>LEMMA 5.1</u>. If the positive integers p and q are such that p is even and (p,q) = 1 then

(5.2)
$$S_{q-1}(\frac{p}{q}) = 0.$$

PROOF. Consider the q-1 numbers

$$\frac{p}{q}$$
, $\frac{2p}{q}$,..., $\frac{(q-1)p}{q}$.

Since (p,q) = 1 none of these numbers is an integer and since p is even q is odd so that q-1 is even.

Since p is even we have for $1 \le r \le \frac{q-1}{2}$ that the integers

$$[r \frac{p}{q}]$$
 and $[(q-r) \cdot \frac{p}{q}]$

have different parity from which it is clear that $S_{q-1}(\frac{p}{q}) = 0$.

PROOF OF THEOREM 5.1.

Without loss of generality, we may assume that $0 < \alpha < 1$.

Let $\alpha = \langle 0; a_1, a_2, \dots \rangle$ and let

$$\frac{A_0}{B_0} = \frac{0}{1}, \frac{A_1}{B_1} = \frac{1}{a_1}, \frac{A_2}{B_2} = \frac{a_2}{a_1 a_2 + 1}, \dots, \frac{A_n}{B_n}, \dots$$

be the corresponding convergents.

Since $\alpha \in P$ we have that $a_{2i} \equiv 0 \pmod{2}$ for all $i \geq 1$ from which it is easily seen that A_{2n} is even for all n.

In order to prove the theorem it suffices to show that for all $n \in \mathbb{N}$

(5.3)
$$\sum_{k=1}^{B_{2n}-1} (-1)^{[k\alpha]} = 0.$$

Since A_{2n} is always even it follows from lemma 5.1 that

so that our proof will be complete if we can show that

(5.5)
$$[k\alpha] = \left[k \frac{A_{2n}}{B_{2n}}\right] \text{ for } 1 \leq k \leq B_{2n} - 1.$$

We proceed by contradiction. If (5.5) is not true then (note that $\frac{A_{2n}}{B_{2n}} < \alpha$)

(5.6)
$$k\frac{A_{2n}}{B_{2n}} < m < k \alpha \text{ for some } m \in \mathbb{N}.$$

Hence

(5.7)
$$\frac{1}{B_{2n}} \leq m - k \frac{A_{2n}}{B_{2n}} < k\alpha - k \frac{A_{2n}}{B_{2n}} = k(\alpha - \frac{A_{2n}}{B_{2n}}) < (B_{2n}-1) \cdot \frac{1}{B_{2n}^2} < \frac{1}{B_{2n}}.$$

This contradiction completes the proof.

COROLLARY. For every irrational $\alpha \in N$ we have that

(5.8) $S_N(\alpha) = 0$ for infintely many $N \in \mathbb{N}$.

ADDENDUM.

During the preparation of this note J. VAN DE LUNE and H.J.J. TE RIELE proved the following (more general)

THEOREM. If a is irrational then $S_n(a) = 0$ for infinitely many $n \in \mathbb{N}$.

REMARK: From now on all fractions $\frac{p}{q}$ are assumed to be irreducible.

In order to prove the theorem we use the following

<u>LEMMA</u>. If p is odd then $S_{2q}(\frac{p}{q}) = 0$.

PROOF: Observe that the numbers

$$\left[r\frac{p}{q}\right]$$
 and $\left[(q+r)\frac{p}{q}\right]$, $1 \le r \le q$

have different parity.

In addition we will use the following well-known

THEOREM (of HURWITZ). If $\alpha \in \mathbb{R}$ is irrational then there exist infinitely many rationals $\frac{p}{q}$ such that

$$\left|\alpha-\frac{p}{q}\right| < \frac{1}{q^2\sqrt{5}}$$
.

PROOF OF THE THEOREM. Let H be the set of all fractions $\frac{p}{q}$ such that

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^2\sqrt{5}}$$
.

It is clear that the proof will be complete if we can show that for every $\frac{p}{q} \in H$ we have either $S_{q-1}(\alpha) = 0$ or $S_{2q}(\alpha) = 0$. We consider a number of cases.

CASE 1. $\frac{p}{q} \in H$, p even.

Then we have $S_{q-1}(\alpha) = 0$.

In order to see this it is clearly sufficient to prove that $S_{q-1}(\alpha) = S_{q-1}(\frac{p}{q})$.

Hence it is sufficient to show that

$$[k\alpha] = [k\frac{p}{q}] \text{ for } 1 \leq k \leq q-1.$$

Assuming this does not hold true we have for some k, $1 \le k \le q-1$, that there exists an m ϵ ZZ such that either

$$k \frac{p}{q} \leq m < k \alpha \text{ (in case } \frac{p}{q} < \alpha\text{)}$$

or

$$k \alpha < m \le k \frac{p}{q}$$
 (in case $\frac{p}{q} > \alpha$).

Since $1 \le k \le q-1$, equality in the above cases is impossible and thus

$$\frac{1}{q} \leq |m - k \cdot \frac{p}{q}| < k |\alpha - \frac{p}{q}| < \frac{q-1}{q^2 \sqrt{5}} < \frac{1}{q},$$

which is a contradiction.

CASE 2.
$$\frac{p}{q} \in H$$
, p odd.

In this case we have $S_{2q}(\alpha)$ = 0. In order to see this we need only show that $S_{2q}(\alpha)$ = $S_{2q}(\frac{p}{q})$.

$$\underline{\text{CASE 2.1.}} \; \frac{p}{q} < \alpha, \; p \; \text{odd.}$$

It suffices to show that

$$[k\alpha] = [k\frac{p}{q}]$$
 for $1 \le k \le 2q$.

Since this may be established similarly as in case I we consider

CASE 2.2.
$$\frac{p}{q} > \alpha$$
, p odd.

We observe that

$$\left[q \cdot \frac{p}{q}\right] = p, \left[2q \frac{p}{q}\right] = 2p$$

and

$$[q\alpha] = p-1, [2q\alpha] = 2p-1$$

so that (since p is odd) it suffices to show that

$$[k\alpha] = [k\frac{p}{q}]$$
 for $1 \le k \le 2q$, $k \ne q$, $k \ne 2q$.

Since this may be shown similarly as before the proof is complete. \Box

REMARK. From the above considerations it is easily seen that

- (i) if p is even then $S_{nq}(\frac{p}{q})$ = n for all n \in N.
- (ii) if p is odd then $S_{2nq}(\frac{p}{q})$ = 0 for all n \in IN.